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Enzyme-catalyzed dehalogenation is typically associated with H° o0 _o I\ COo0’
xenobiotic metabolism and in particular with microorganisms that
detoxify environmental pollutants> Both aliphatic and aromatic
substrates are susceptible to dehalogenation through mechanisms X=LH
that include oxidation, reduction, and hydrolysis. Oxidative
processes are usually associated with aerobic organisms, whereas & ., R
reductive processes are usually associated with anaerobic organ-_ ™\ ) o N .
isms. Remarkably, mammals have the additional ability to OAQW(COO e — €00
promote reductive deiodination of the hormone thyroxine (3-[4-
(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenylalanine), its me-
tabolites, and related intermediates including iodotyrosine. A series hond. This type of process has been proposed for triphenylphos-
of selenoenzymes found in tissues such as brown fat, liver, kidney, phine-dependent debromination ebromophenol and bromo-
and the central nervous system are responsible for the reductiorgnjline? AICIs- and GaG-catalyzed deiodination of diiodocresol,
and deilodlnatlon of thyroxme .and the concomitant oxidation pf hydriodic acid-dependent deiodination of aryl iodidesd most
glutathione? In contrast, an iodide salvage enzyme in the thyroid ecently, biomimetic coupling of two diiodotyrosin&sSimilar
mediates reduction and deiodination of iodo- and diiodotyrosine mechanisms have been proposed for the biological deiodination
with consumption of NADPH (Scheme 1)Little mechanistic  of thyroxine by a selenocysteinyl residéand dechlorination of
data has yet to be gathered on these mammalian reactions, angetrachlorohydroquinone by a cysteinyl residue or glutathiéne.
we now report compelling evidence for a key intermediate The active site of iodotyrosine deiodinase has not yet been
proposed in catalysis of iodotyrosine deiodinase. _ characterized but may also include a cysteinyl residuEhe

Both direct aromatic substitution and halophilic reaction of a apility of this enzyme to stabilize the propodedionaromatic

nonaromatic tautomer (see below) can be considered for thistaytomer is described below by the binding affinity of pyridonyl-
reductive process. However, aromatic substitution via nucleophilic containing mimics of this intermediate.

addition and formation of an anionic Meisenheimer intermediate  The initial targetsp,L-3-(2-pyridon-5-yl)alaninel andp,L-3-
(S\]AR) is disfavored for electron-rich target§. The weakl®ond (N_methy|_2_pyrid0n_5_y|)a|aninéz’ were constructed using a
might instead suggest a related homolytic procesg1(5 and  standard condensation with diketopiperazine (Schenté Be

yet model conditions necessary for such a dehalogenation remaimecessary aldehyde was prepared by sequential bromination,
far from physiologicaP. Preliminary studies have also suggested |ithjation, and finally formylation of 2-methoxypyridine (see
that diiodotyrosine is stable to one-electron reductants including supporting information for experimental detait)he intermedi-

sulfite, metabisulfite, ferrocyanide, and dithiorfité=lectron-rich ate diketopiperazine was reduced and hydrolyzed by HI and
aryl halides are most commonly dehalogenated via Lewis acid-

catalyzed two-electron process$ebautomerization (or possibly
protonation) to form the nonaromatic intermediate illustrated in
Scheme 2 facilitates halophilic attack and cleavage of theé C
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phosphorus (red) in acetic anhydride. The resulting product was
neutralized with ammonia and crystallized to provide the desired
pyridonyl amino acid in an overall yield of 17%. Selective
methylation of this material with C#firequired initial formation
of its N>-BOC methyl ester derivative and then subsequen
deprotection to generate the product in a 57% yield flor®ur
initial success with this compound as described below encourage
us further to prepare thi-ethyl andN-isopropyl analogues3(
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Table 1. Summary of Kinetic and Binding Constants for
lodotyrosine Deiodinage

HO K, 9,300 (x1,000) nM

Ccoo’
I NH;*
R inhibitor R K; M)
AY
N N 1 H 1,100 (x100)
o coo’ 2 Me 24 (+8)
= . 3 Et 87 (x13)
NH;3 4 iPr 400 (£33)

a All inhibitors bound competitively with respect to diiodotyrosine,
and henceK, values were calculated accordingly from their concentra-
tion-dependent effect on the apparé@t of diiodotyrosine.

efficient but unremarkable inhibitor with &, that was ap-
proximately 9-fold lower than th&;, for diiodotyrosine (Table

1). However, methylation of the pyridonyl ring generated an
analogue? with a highly significant 46-fold increase in enzyme
affinity relative to1. TheK, of this N-methyl derivative is thus
more than 380-fold lower than th&, of diiodotyrosine and 2100-
fold lower than theK,, reported for iodotyrosine (5Q:M,
bovine)# Such alkylation was expected to enhance binding since
an iodo group would normally occupy this site. Ethyl and
isopropyl analogues & were subsequently examined since these
larger alkyl substituents were previously shown to act as even
better mimics of the crucial’3odo group in 3,35-triiodothyro-

gnine® For the deiodinase, the large alkyl groups were less

effective inhibitors and bound 3.6- and 17-fold weaker, respec-

and4, respectively) as well. The final protection and deprotection tvely, than the methyl derivativé (Table 1). Siill, the N-
steps were avoided when preparing these compounds (29% an ubstituted amino acids exhibited substantial affinity as expected
13% overall yields, respectively) by alkylating the intermediate '°' intermediate or transition-state analogugs. In comparison,
5-formyl-2-pyridone rather than the final pyridonyl amino acid substrate analogues such as 3-methyl- and 3-isopropyltyrosine are

(Scheme 4). very weak inhibitors of the enzyme witK, values greater than

lodotyrosine deiodinase was solubilized from thyroid mi-
crosomes (porcine) using 1.5% Triton X-100 and assayed
according to the literatutgby 29~ release from3l]-diiodoty-
rosine. This preparation of enzyme could be stored @@ for a
month without significant loss of activity and exhibiteda for
diiodotyrosine (9.3«M, porcine) that was a little greater than
that (2.5uM, bovine) measured after solubilizing the enzyme with
a lipase/protease combinatith.

The pyridonyl amino acids1(4) were all observed to be
reversible and competitive inhibitors of diiodotyrosine turnover
under standard assay conditions. Time-dependent inactivation o
the enzyme was neither anticipated nor detected during incubation
with 2 (200 nM) for 120 min at 25°C. Analoguel was an

f
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The pyridonyl analogues described here are particularly useful
for mimicking the nonaromatic tautomer of iodotyrosine, a critical
intermediate proposed for the enzyme-catalyzed deiodination of
this amino acid (Scheme #Thes-electrons of this heterocyclic
system are substantially localized and overwhelmingly form the
pyridone rather than hydroxpyridine tautom3éihe pyridonyl-
containing inhibitors also present structures that contrast to the
delocalized radical and anionic intermediates envisioned for
alternativé® homolytic (Sn1) and heterolytic ($AR) mecha-
nisms. Additional analogues are currently under development for
further active-site characterization of iodotyrosine deiodinase and
related enzymes. The use of pyridonyl amino acids should also
be generally applicable to a variety of enzymes that catalyze other
aromatic substitution reactions including tyrosine-phenol Iyase.

Acknowledgment. This research was supported in part by the National
Institutes of Health (DK-45783). We thank Mitsuhiro Koda for assistance
in preparing the transition-state (or intermediate) analogues and Tatiana
Boiko for preliminary characterization of the deiodinase.

Supporting Information Available: Synthesis and characterization
of the transition-state (or intermediate) analogues4,lpreparation and
assay of iodotyrosine deiodinase (porcine) (PDF). This material is
available free of charge via the Internet at http://pubs.acs.org.

JA990693N



